Orthogonal rational functions with complex poles: The Favard theorem
نویسندگان
چکیده
Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions, the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.
منابع مشابه
A Favard theorem for rational functions with complex poles
Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.
متن کاملRational Gauss-Chebyshev quadrature formulas for complex poles outside [-1, 1]
In this paper we provide an extension of the Chebyshev orthogonal rational functions with arbitrary real poles outside [−1, 1] to arbitrary complex poles outside [−1, 1]. The zeros of these orthogonal rational functions are not necessarily real anymore. By using the related para-orthogonal functions, however, we obtain an expression for the nodes and weights for rational Gauss-Chebyshev quadrat...
متن کاملThe linear pencil approach to rational interpolation
It is possible to generalize the fruitful interaction between (real or complex) Jacobi matrices, orthogonal polynomials and Padé approximants at infinity by considering rational interpolants, (bi-)orthogonal rational functions and linear pencils zB − A of two tridiagonal matrices A, B, following Spiridonov and Zhedanov. In the present paper, beside revisiting the underlying generalized Favard t...
متن کاملOrthogonal Rational Functions
Introduction This monograph forms an introduction to the theory of orthogonal rational functions. The simplest way to see what we mean by orthogonal rational functions is to consider them as generalizations of orthogonal polynomials. There is not much confusion about the meaning of an orthogonal polynomial sequence. One says that f n g 1 n=0 is an orthogonal polynomial sequence if n is a polyno...
متن کاملComputing rational Gauss-Chebyshev quadrature formulas with complex poles
We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [−1, 1]. This algorithm is based on the derivation of explicit expressions for the Chebyshev (para-)orthogonal rational functions.
متن کامل